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Key Points: 

x Ensemble regional projections show a significant increase in frequency and intensity 

of heat stress indices, heat waves and tropical nights. 

x Changes in temperature, humidity, and heat stress indices are characterized by robust 

patterns in terms of diurnal and regional variations   
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Abstract 

This study assesses the future changes in summer (June-July-August; JJA) heat stress over 

South Korea under global warming. To better resolve the region-specific changes in terms of 

geographical patterns and severity of heat stress in the Korean peninsula, four regional 

climate models (RCMs) are used for dynamical downscaling of HadGEM2-AO global 

projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) 

scenarios. Dynamically downscaled simulations (horizontal resolution of 12.5 km and output 

interval of 3 hours) facilitate in-depth analysis of diurnal variation and extremes over South 

Korea, as well as focusing on the particular location, Daegu, that is characterized by high 

vulnerability to rising temperature. Both maximum temperature and heat stress indices such 

as wet-bulb globe temperature and apparent temperature, which include the effect of 

humidity, are examined in order to comprehensively interpret the behaviors of heat stress in 

response to anthropogenic climate change. Ensemble projections reveal robust patterns of 

temperature and resultant humidity increases that are roughly constrained by the approximate 

7% / K increase in the moisture holding capacity. The changes in temperature and humidity 

are directly transmitted to the heat stress indices, showing a significant increase. The heat 

stress is exacerbated in a differentiated way, with more intensification in diurnal variation at 

nighttime and in regional variation at low-elevation basins. Both RCP4.5 and RCP8.5 

scenarios project the statistical likelihood of a notable increase of extreme heat stress indices, 

much stronger and more extended heat waves, and the emergence of a long period of 

consecutive tropical nights. 
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1 Introduction 

Intense and frequent heat waves accompanied by global warming can worsen the risk 

of human health and heat-related mortality. As the global average temperature for 2016 was 

the highest on record and marks consecutive record-breaking values [Climate Council, 2016], 

global concerns that the climate system is warming up faster than expected may be well 

founded [IPCC, 2013]. In accordance with global warming, Korea also experienced one of its 

hottest summers in 2016 [KMA, 2017]. The number of heat waves, which are defined as 

consecutive days with maximum temperature exceeding 33°C by the Korea Meteorological 

Administration (KMA), in 2016 was the second highest ever recorded in the observational 

data, following the worst one with a death toll exceeding 3300 that occurred in the summer of 

1994 [Kysely and Kim, 2009].    

A significant body of research has investigated the impacts of anthropogenic climate 

change on extreme heat events with a focus on temperature [e.g., Meehl and Tebaldi, 2004]. 

However, the high risk arising from heat stress is not a function of the intensity of 

temperature alone, but the combined consequences of temperature and humidity [Davis et al., 

2016; Willett and Sherwood, 2012; Sherwood and Huber, 2010; Fischer et al., 2012; Im et 

al., 2017]. Since high humidity tends to reduce the efficiency of the human body’s cooling 

system by inhibiting sweat evaporation, the humidity level can play a critical role in making 

extreme heat much more dangerous and intolerable [Willett and Sherwood, 2012; Sherwood 

and Huber, 2010]. Furthermore, Wu et al. [2017] emphasized the effect of wind speed to 

measure the human thermal perception, showing that decreases in wind speed worsen the heat 

stress during the summer in the warm region of China. 

The climate of South Korea in the summer season is particularly vulnerable to the 

negative impact of global warming in terms of heat stress because the typical summer 

weather condition is characterized by heat and humidity under the influence of predominant 
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southwesterly monsoon flows [Seo and kim, 2015]. As global warming is attributable to 

overall moistening [Willett et al., 2008], the projected temperature increase will exacerbate 

the severity of heat stress very close to the dangerous level of human adaptability. 

Nevertheless, relatively few studies have explicitly addressed the contribution of humidity to 

extreme heat stress due to anthropogenic climate change focusing on the Korean peninsula, 

whereas most previous studies have analyzed the likelihood of extremes based on maximum 

temperature [e.g., Boo et al., 2006; Im et al., 2011, 2015; Koo et al., 2009; Min et al., 2014]. 

Recently, several studies using Global Climate Models (GCMs) have dealt with the issue of 

heat stress using various indices that measure the combined effects of temperature and 

humidity [e.g., Willett and Sherwood, 2012; Buzan et al., 2015; Zhao et al., 2015; Sherwood 

and Huber, 2010; Fischer and Knutti, 2013], but it is difficult for GCMs with 100-200 km 

resolution to account for the unique geographical properties that potentially modulate the 

regional variation and intensity of heat stress in South Korea.  

In this study, we investigate the changes in extreme heat stress in response to 

anthropogenic warming using multi-regional climate model (RCM) ensemble projections. In 

order to produce fine-scale (12.5 km) regional projections suitable for resolving complex 

topography and coastlines, which are poorly represented in a coarse-grid GCM, dynamical 

downscaling is performed using four different RCMs, namely, WRF, HadGEM3-RA, 

RegCM4, and MM5, driven by the HadGEM2-AO global projections under the two 

representative concentration pathway (RCP4.5 and RCP8.5) scenarios (see section 2.1). 

Temperature and humidity from twelve 30-year reference (1981-2010) and RCP4.5 and 

RCP8.5 future (2071-2100) projections are analyzed based on the output of 3-hour interval 

and 12.5 km spatial resolutions. Although systematic biases appear in the downscaled 

simulations (see section 3.1), bias correction was not applied in this study. The systematic 

bias of each model can be partly eliminated by subtracting the climatological mean of the 
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reference simulation from that of the RCP future projection, under the assumption of 

“stationarity”, i.e., the bias pattern does not change with time. Suh et al. [2016] demonstrated 

using the same RCM projections used in this study that changes in temperature do not vary 

greatly between without and with bias-corrected projections, in contrast with the significant 

difference in the performance of the reference simulation. However, the extreme analysis 

counting of exceedance based on absolute threshold may be affected by the cold bias. In this 

regard, the number of days with tropical nights (minimum temperature over 25°C) and hot 

days (maximum temperature over 33°C) may be underestimated due to systematic cold bias. 

In spite of this caveat, comparing three simulations (i.e., Reference, and RCP4.5 and RCP8.5 

scenarios) gives us some insight into the changes in heat stress in response to different levels 

of greenhouse gas (GHG) emissions. As for an effective indicator to measure extreme heat 

stress, we calculate and characterize the simplified wet-bulb globe temperature [Willett and 

Sherwood, 2012] and apparent temperature [Steadman, 1984], which are popular heat stress 

indices that include the effect of humidity (see section 2.2). In addition to heat stress indices, 

the duration of heat waves (defined as consecutive days with maximum temperature 

exceeding 33°C) and tropical nights (defined as minimum temperature exceeding 25°C) are 

examined in order to comprehensively interpret future changes in extreme heat stress.  

 

2 Experimental design and analysis method 

2.1 RCM experimental design 

In this study, four RCMs (WRF, RegCM4, MM5, and HadGEM3-RA) are used for 

regional climate simulations over Northern East Asia within the framework of a national 

downscaling project of the Republic of Korea. All RCMs are performed under the same 

horizontal grid resolution (12.5km) and domain configuration. Figure 1 presents the domain 

and topography that are commonly configured for four-RCM simulations. The domain covers 
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Northern East Asia centered at the Korean peninsula (center: 37.5°N, 127.5°E) and the 12.5 

km grid spacing is fine enough to represent the general geographical settings, such as relevant 

mountains located in South Korea (e.g., the Taebaek Mountains, extending from north to 

south along the eastern coastal regions of Korea, and the Sobaek Mountains located in the 

south-central regions of the peninsula). On the other hand, the topography of HadGEM2-AO 

(1.875° × 1.250°) over the RCM domain shows hardly any mountain slope in the Korean 

peninsula. This poor representation of geographical characteristics could negatively affect the 

model performance in simulating local and regional climates. All RCMs are driven by the 

same initial and lateral boundary conditions derived from the Hadley Centre Global 

Environmental Model version 2 – Atmosphere and Ocean (HadGEM2-AO) model data [Baek 

et al., 2013]. Previous studies have shown that HadGEM2-AO exhibits better performance in 

simulating climate over Northeast Asia, compared to other CMIP models (CMIP3 and 

CMIP5) [Baek et al., 2013; Hong and Ahn, 2015]. The four individual RCMs use different 

physical parameterization components, which result in the inter-model spread (i.e., 

uncertainty) among the models. This model uncertainty is well discussed by Hawkins and 

Sutton [2009]. They suggested that uncertainties in projections of future climate arise from 

various sources, mostly referred to future emissions of GHG (scenario uncertainty), choice of 

climate model (model uncertainty), and internal variability. An important point is that the 

relative contributions of uncertainty sources were found to vary considerably depending on 

the lead time. For example, the projection with more than 60-year lead time like our study 

shows larger factions of model uncertainty than internal variability.  

A more detailed description of the RCMs is presented in Table 1. The two RCP 

scenarios, namely RCP4.5 and RCP8.5 [Moss et al., 2010], are used for future projection. 

The reference simulations have been integrated over the period 1979-2010, and RCP4.5 and 

RCP8.5 projections have been integrated from 2019 to 2100. Since the CMIP5 historical 
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simulations ended in 2005, the reference simulations for the period 2006-2010 are forced by 

RCP8.5 emission scenario. GHG concentrations for this 5-yr period do not vary greatly 

depending on the scenarios, such as 384.82 ppm for RCP4.5 and 384.87 ppm for RCP8.5. A 

two-year spin-up period for the reference and RCP simulations (1979-1980 and 2019-2020, 

respectively), is excluded from the analysis for the typical summer season (June-July-August; 

JJA). Two sets of 30-year simulations have been analyzed: one for the present period of 

1981-2010 and one for the future of 2071-2100.  

To validate the reference simulations, 3-hour meteorological data from 59 weather 

stations (58 red closed circles and 1 blue open circle in Fig. 1) operated by the KMA are used 

for the same period of reference simulations. These station data make it possible to validate 

diurnal variation and to perform the in-depth analysis of each particular location. The model 

output of 3-hour interval with 12.5 km horizontal resolution is interpolated into 59 

observational sites using an inverse distance weight interpolation method. In addition, a daily 

mean gridded temperature dataset with 0.5° x 0.5° grid generated by Asian Precipitation-

Highly-Resolved Observational Data Integration Toward Evaluation (APHRODITE) project 

[Yasutomi et al., 2011] is also used for the validation of reference simulations. For this 

validation, the model output is also interpolated into the same grid with APHRODITE using 

an inverse distance weight interpolation method. 

 

2.2 Analysis method 

Various heat stress indices have been developed, each suited for a specific purpose 

[Anderson et al., 2013; Buzan et al., 2015]. They are mostly calculated based on the 

combination of meteorological variables such as temperature, humidity, radiation, and wind. 

In general, the algorithms for combining multiple variables are approximately derived with 

many assumptions. In addition, since most heat stress indices include many constants derived 
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from an empirical fit for a particular circumstance (e.g., the target region’s climatological 

condition), finding a single index that is universally applicable is problematic [Willett and 

Sherwood, 2012]. In this study, we select two popular heat stress indices, namely, simplified 

wet bulb globe temperature and apparent temperature, in order to measure the physiological 

thermal comfort.  

Original wet bulb globe temperature is an index composed of air temperature, natural 

wet-bulb temperature, and black globe temperature. It has the advantage of providing the 

threshold to levels of physical activities [Dunne et al., 2013; Willett and Sherwood, 2012], 

and is considered a well-established heat index for workplace applications [Lemke and 

Kjellstrom, 2012]. However, it is difficult to calculate the wet bulb globe temperature using 

conventional climate model output. For convenience and easy application, we select 

simplified wet bulb globe temperature (Tsw), which is an approximation to the wet bulb globe 

temperature that assumes moderately high radiation levels and light wind conditions. Simply, 

Tsw can be calculated using only temperature and humidity without accounting for the effect 

of radiative fluxes and wind [Willett and Sherwood, 2012]. The formula to calculate Tsw is as 

follows.   

 

Tsw = 0.567Tas + 0.393e + 3.94, 

where Tas is air temperature (°C) and e is vapor pressure (hPa). 

 

To examine the robustness of the characteristics of heat stress, we also calculate the 

apparent temperature (hereafter, Tap), which is widely used as an indicator of heat comfort. 

Tap is a measure of perceived temperature, incorporating human physiology and the body’s 

ability to dissipate heat, and is therefore considered a physiologically based heat stress index 

suitable for quantifying sultriness during a heat wave [Steinweg and Gutowski, 2015]. There 
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are several ways to estimate Tap [Davis et al., 2016], but we follow the method adopted by 

Steinweg and Gutowski [2015].  

 

Tap = 2.719 + 0.944(Tas) + 0.016(Td)2, 

where Tas is air temperature (°C) and Td is dewpoint temperature (°C)  

 

In addition to these two different heat stress indices that include the effect of humidity, 

we investigate the characteristics of heat waves and tropical nights, which are defined by only 

maximum and minimum temperature, respectively. Whereas Tsw and Tap are not specifically 

developed and adjusted for South Korea’s climate condition, the thresholds to define heat 

waves (maximum Tas exceeding 33°C) and tropical nights (minimum Tas exceeding 25°C) are 

determined based on the current standards applied by KMA. The KMA has issued 

heatwave warnings in the case of two consecutive days with maximum temperature 

exceeding 33°C. 

3 Results 

3.1 Validation of reference simulation 

Since the previous studies evaluated the general skills of the four individual RCMs 

used in this study [e.g., Im et al., 2015; Hong and Ahn, 2015; Lee et al., 2014; Seo et al., 

2015; Suh et al., 2016], we only compare the performance of four-RCM ensemble mean 

(hereafter, ENS) in capturing the summer season (June-July-August: JJA) climatology of Tas, 

Tsw and Tap, which are focused on this study, with driving GCM as well as observations.  

First, we present the spatial distribution of 25-year (1981-2005) JJA climatological 

mean Tas derived from APHRODITE observation, HadGEM2-AO, and ENS (Fig. 2). To 

facilitate the comparison, HadGEM2-AO and ENS with different resolutions are interpolated 
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onto a 0.5° x 0.5° APHRODITE grid using a bilinear interpolation method. The relevant 

feature derived from this comparison is that the spatial pattern of temperature simulated by 

HadGEM2-AO is completely distorted against APHRODITE observation. The difference 

pattern between GCM and APHRODITE clearly reflects the main cause of this distortion, 

indicating systematic positive bias along the mountainous regions but systematic negative 

bias along the low lying coastal regions. On the other hand, ENS is capable of reproducing 

topographically induced spatial distribution of the temperature that is similar with the 

observed pattern. Since temperature exhibits a strong gradient with altitude following the 

lapse rate, the fine-scale of ENS can better resolve the distinct topographical signature and 

thus enhance the performance in capturing the temperature distribution. However, ENS 

systematically underestimates Tas across the whole domain, mostly within the range of -1°C 

and -2°C. 

Next, we present the spatial distribution of 30-year (1981-2010) JJA climatological 

daily mean Tas, Tsw, and Tap derived from the station observations and ENS at 59 in-situ 

observational sites (Fig. 3). To facilitate the comparison, ENS with 12.5km resolution is 

again interpolated into 59 observational sites using an inverse distance weight interpolation 

method. Topographical effect seen clearly in Figure 2 seems to be less relevant in the 

observed pattern at the individual station base. It is due to the relatively low density of high-

elevation stations. Although Tas, Tsw, and Tap simulated by ENS agree reasonably well with 

those from the observations, they reveal the systematic underestimation across the whole 

domain. Since the negative bias of simulated Tas is transmitted to Tsw and Tap, they retain a 

similar pattern of negative bias. However, the magnitude of the negative bias tends to be 

moderated or amplified according to the relative contribution of humidity because Tsw and Tap 

are defined as a function of not only temperature but also humidity.   

Furthermore, in order to quantitatively evaluate the performance of reference 
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simulations, we applied the Taylor diagrams (Fig. 4). By comparing RCM simulations with 

in-situ observational data, the HadGEM3-RA commonly shows the largest standard deviation 

in Tas, Tsw and Tap among the four RCMs while standard deviations derived from the WRF 

model agree relatively well with those of the station observation. As for the spatial 

correlation, ENS generally outperforms the four individual RCMs regardless of variables 

such as Tas, Tsw and Tap. In order to support these results based on the in-situ observational 

data, we also used the daily temperature data from the APHRODITE for the overlapping 

periods from 1981 to 2005. By comparing RCM simulations with APHRODITE dataset, ENS 

shows a relatively better performance in simulating the spatial distribution of Tas, Tsw and Tap 

in terms of spatial correlation, compared to the results from the four individual RCMs, which 

is in line with the above results based on the in-situ observational data. 

Figure 5 presents the diurnal variation of Tas, Tsw, and Tap averaged over 59 locations 

derived from the observations and RCM simulations. As for the model simulations, since 

ENS mean may smoothen the data variability, we present together the ENS (thick blue line) 

and the four RCM spreads between the maximum and minimum values of each RCM (sky-

blue shading) in order to provide the uncertainty range introduced by each RCM (i.e., inter-

model spread). Tas, Tsw, and Tap exhibit relevant diurnal variation with a daily minimum at 

0600 local time (LT) and daily maximum at 1500 LT. By comparing with the observed 

pattern, ENS simulates the phase of the diurnal cycle reasonably well, capturing both 

maximum and minimum peaks. However, consistent with the cold bias presented in the daily 

mean spatial pattern, ENS manifests a cold bias in the diurnal variation of Tas, Tsw, and Tap. 

Interestingly, ENS shows better performance in daytime than in nighttime. This cold bias of 

the daily mean mostly occurs during the nighttime. During the daytime, ENS becomes closer 

to the observational data, indicating that the bias of the maximum value is relatively less. 
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On the gross pattern of diurnal cycles of Tas, Tsw, and Tap, we then focus on the 

detailed characteristics of maximum Tas, Tsw, and Tap because of their relevant association 

with extreme heat stress. Figure 6 presents the probability density function of daily maximum 

Tas, Tsw, and Tap derived from the observations and simulation. Tas, Tsw, and Tap show 

different statistical characteristics in terms of mean and variance. For example, the means 

(variance) of Tas, Tsw, and Tap derived from simulation are 26℃, 28℃, and 35℃ (8.4, 9.4, 

and 18.7), respectively, which are in good agreement with observation. In spite of the slight 

shift in distributions toward the left side due to the cold bias, the simulations are capable of 

capturing the different behavior corresponding to observed Tas, Tsw, and Tap, not only for the 

relative probability varying at particular range of values but also the variation range. 

Particularly, Tas, Tsw, and Tap derived from observations and simulation are fairly normally 

distributed but with a slightly negative skewness and a very mild negative kurtosis. The 

quantitative assessments of the statistics are summarized in Table 2. Consistent with the 

diurnal variation of temperature seen in Fig. 5, Tsw shows better performance than Tas and Tap, 

in terms of negative bias.  

To further assess how well the models are able to simulate the extreme heat waves 

occurring in the present-day climate, we compare the simulated frequency and intensity of 

heat waves with the observed pattern. For this analysis, we select one particular station, 

namely Daegu (latitude: 35.89°N, longitude: 128.62°E, altitude: 49m), rather than averaged 

or pooled over 59 stations. Since the severity of heat waves and their impact on mortality 

show a strong regional dependency [Kim et al., 2006], the analysis from all 59 stations might 

lead to imperceived interpretation of the high levels of heat stress that already exist in some 

parts of South Korea. Daegu, one of the hottest cities in Korea, is located in a basin 

surrounded by mountains (see Fig. 1) and this geographical setting may contribute to its 

higher temperature than the surrounding higher elevation areas. Figure 7 shows the frequency 
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of consecutive hot days in Daegu derived from the observations and simulations. As 

mentioned in section 2.2, a hot day is defined as a day with maximum Tas exceeding 33°C, 

which is the threshold applied by KMA for issuing heat wave warnings. Figure 7 also 

includes the intensities of heat waves that are calculated as maximum Tas averaged over the 

spells of each duration class. ENS is capable of reproducing the qualitative characteristics of 

heat waves, corresponding to frequency and intensity. Similar to the observed pattern, the 

frequency of heat waves gradually decreases but their intensity increases as the interval 

length increases. However, ENS consistently underestimates the frequency of heat waves, in 

spite of the existence of a model result with higher frequency than the observed values (upper 

end of the spread bar). This is because the absolute threshold (i.e., 33°C) does not allow 

consideration for the degree of the bias. Therefore, individual model results can be rather 

sensitive to the predefined threshold according to their bias in the model climatology.  

Moving to the extremes of heat stress indices, we examine the RCM performance to 

simulate the threshold exceedance of Tsw and Tap for present-day climate. Whereas the 

threshold of 32°C is applied to maximum Tsw in order to describe the level of extreme risk 

[Willett and Sherwood, 2012], the threshold of 40.6 °C is used to count maximum Tap based 

on the criterion used by the US National Weather Service in issuing a heat advisory warning 

because of dangerous health conditions [Steinweg and Gutowski, 2015; Fischer and Schar, 

2010]. Figure 8 presents the total number of threshold exceedances of maximum Tsw and 

maximum Tap in Daegu for the 30-year summer season (JJA) derived from the observations 

and reference simulation. Analysis of the observational data shows that Daegu has 

experienced 648 days with maximum Tsw exceeding the threshold of 32°C during the recent 

30-year summer season (JJA) in the total of 2760 days (92-day/year x 30 years). This average 

of 21.6 days annually demonstrates that Daegu is already exposed to a vulnerable condition 

in terms of human thermal comfort and heat-related mortality. This suggests that a few 
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degrees of future warming will worsen the heat stress adaptability. Compared to the threshold 

exceedance counted by the observational data, ENS shows fewer extremes in both Tsw and 

Tap. However, the inter-model spread shows an RCM with more threshold exceedances than 

the observations. Similar to the analysis of heat waves, the absolute threshold causes a large 

deviation in the individual models, depending on the systematic bias in their climatology. 

Considering that this comparison is based on pointwise and extreme climate analysis, we 

considered ENS to have shown encouraging performance in simulating the detailed 

characteristics of heat stress in Daegu, which is one of the hottest cities in Korea.  

The validation of the reference simulation against station observations demonstrates 

that ENS from the four RCMs shows reasonable performance in reproducing both the 

observed climatological statistics across various temporal and spatial scales and the distinct 

characteristics among Tas, Tsw, and Tap. However, ENS manifests a systematic cold bias in Tas 

pattern, and this error is transmitted to Tsw and Tap. Since severe cold bias along the 

mountainous regions is partly due to the sparse density of observational station data, the 

analysis focusing solely on the Daegu station located in a low basin area shows a reasonable 

performance in capturing the extremes of heat waves and heat stress indices. Given that 

vulnerability to heat stress is dominant in highly populated urban cities and particularly low-

altitude basins [Son et al., 2012; Kim et al., 2006], this result supports the potential usefulness 

of ENS projections for preparing for and minimizing the adverse human health and mortality 

consequences. 

 

3.2 Projection of future changes 

In this section, we focus on the future projection of heat stress in response to different 

emission scenarios. Figures 9 and 10 present the spatial distribution of the future changes in 

Tas, Tsw, Tap, and specific humidity derived from ENS and HadGEM2-AO projections under 
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the RCP4.5 and RCP8.5 scenarios at the end of the 21st century (2071-2100) with respect to 

the present-day climate (1981-2010). The warming projected by ENS is slightly lower than 

that from HadGEM2-AO. For example, ENS and HadGEM2-AO under RCP4.5 (RCP8.5) 

scenarios project temperature increases of 2.8°C (4.5°C) and 3.2°C (5.1°C), respectively. 

Accordingly, HadGEM2-AO shows a slightly larger increase in heat indices than ENS does. 

However, the difference between HadGEM2-AO and ENS seems to be marginal compared to 

the increases in temperature and heat indices in response to enhanced GHGs concentrations. 

In line with many other studies [e.g. Suh et al., 2016; Ahn et al., 2016], temperature increases 

are very clear and unequivocal across the entire target region, and these changes all satisfy 

the statistical significance at the 95% confidence interval based on the two-tailed t-test. The 

common feature appearing in all Tas, Tsw, and Tap data is an increasing rate that is roughly 

proportional to the GHG concentrations. Without exception, Tas, Tsw, and Tap are all much 

warmer under RCP8.5 scenario than under RCP4.5 scenario. These temperature changes 

seem to be monotonically responding to emission forcing. However, a detailed examination 

of the spatial pattern reveals the important similarity and difference in their regional 

variations among Tas, Tsw, and Tap. While Tas change shows an approximate southwest-

northeast gradient pattern, Tsw and Tap appear to be tied to topographic features. Compared to 

highly mountainous regions (e.g., the Taebaek Mountains and Sobaek Mountains, see Fig. 1), 

the greater increases in Tsw and Tap appear in low-elevation basins and coastal regions. This 

has important implications for the perspective of socio-economic vulnerability and exposure 

at risk due to heat stress because the geographical locations of higher Tsw and Tap coincide 

largely with regions of densely populated urban areas (Socioeconomic Data and Applications 

Center, http://sedac.ciesin.columbia.edu/). Along with rising temperature, significant 

increases in surface specific humidity have been also identified in South Korea (Fig. 9g and 

10g). It is supported by the fundamental thermodynamics related to the Clausius–Clapeyron 

http://sedac.ciesin.columbia.edu/
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(C–C) relationship that atmospheric moisture-holding capacity increases approximately 7 % 

for each 1 K increase in temperature. Significant deviations have been found in C-C scaling 

at the regional scale because this C-C relationship could be overwhelmed by other processes 

and factors [e.g., Berg et al., 2009; Wang et al., 2017; Ashfaq et al., 2016]. However, Im et al. 

[2017] demonstrated that the temperature sensitivity of precipitation intensity roughly agrees 

with the C-C relationship over East Asia, including the Korean peninsula, using the same 

RCM projections analyzed in this study. The general similarity of spatial patterns between 

specific humidity and Tsw and Tap suggests that atmospheric humidity is a key factor in 

shaping the geographical distribution of the increases in Tsw and Tap. Therefore, increases in 

both temperature and humidity combine to favor higher heat stress indices such as Tsw and 

Tap that include humidity effect, particularly in the low-elevation regions. This region-

specific response of temperature and humidity due to global warming is an illustrative 

example that highlights the need for RCMs with a more refined representation of topography 

for climate change studies, particularly in regions like South Korea.   

Figure 11 presents the changes in diurnal variations of Tas, Tsw, Tap, and specific 

humidity in response to RCP4.5 and RCP8.5 emission scenarios. ENS and the inter-model 

spread are presented together. All variables show significant increases, the increments of 

which depend on the GHGs emission forcings, which is in line with the findings from Figs. 9 

and 10. In particular, specific humidity (more than 30%) is greatly increased under RCP8.5 

scenario. The increasing rate of humidity with respect to temperature is approximately 

constrained by the C-C relationship, which shows an approximate 7% increase in the 

moisture holding capacity per degree Kelvin (K) increase. For example, while Tas increases 

by 2.8°C and 4.5°C under RCP4.5 and RCP8.5 scenarios (area-averaged values in Figs. 9a 

and 10a), the daily mean specific humidity increases by 18.4% and 31.7%, respectively, 

equating to 6.6 % and 7% per K of warming, which are in good agreement with the C–C 
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estimate (7% / K). As for the differentiated warming in diurnal cycle, the four RCMs show a 

fairly robust pattern in spite of inter-model deviation. Regardless of the degree of warming 

(RCP4.5 vs. RCP8.5), all projections consistently show more increase in minimum peak and 

less increase in maximum peak. This implies that the increases in tropical nights defined by 

minimum Tas could be more dominant than the increases in heat waves defined by the 

maximum Tas under the warmer climate based on our RCM projections.  

Figure 12 presents the frequency distribution of heat waves (i.e., maximum Tas 

exceeding 33°C) and consecutive tropical nights (i.e., minimum Tas exceeding 25°C) at 

various durations in Daegu station derived from reference simulation and RCP4.5 and 

RCP8.5 projections. As indicated by the validation of reference simulation, Daegu is one of 

the Korean regions most prone to extreme heat stress. Temperature increase is directly 

translated to the frequency and intensity of heat waves and consecutive tropical nights. As 

global warming strengthens, severe heat waves and tropical nights are projected to 

significantly increase. A notable change is the emergence of a long period of consecutive 

tropical nights even under RCP4.5 scenario. Compared to the changes in heat waves, tropical 

nights are projected to increase dramatically, which is consistent with the analysis of diurnal 

variation seen in Fig. 11. Physiologically, the consecutive tropical nights will adversely affect 

human health by depriving comfortable sleep and inhibiting the recovery from the daytime 

heat stress. To investigate the severity of heat stress in days with tropical nights, we perform 

a composite analysis of heat stress indices. Simply, we divide daily mean Tsw and Tap into two 

categories depending on whether or not the daily minimum temperature exceeds the threshold 

of tropical nights (25°C). The spatial distributions of daily mean Tsw and Tap averaged over 

these two different categories are presented in Figs. 13 and 14. Daily mean Tsw corresponding 

to tropical nights is much higher than that corresponding to non-tropical nights. The behavior 

of Tap is mostly similar with that of Tsw. Given that Tsw and Tap combined with tropical nights 
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show very consistent geographical patterns, the regions characterized by remarkably high Tsw 

and Tap are far more likely to be adversely affected under future global warming. Assuming 

that humans suffer extreme heat stress all day long followed by tropical nights, the most 

severe impact will arise because heat stress is accumulated without the break or release 

period.  

Figure 15 presents the spatial distribution of mean duration and intensity of heat 

waves defined as a spell of at least two consecutive days with maximum Tap exceeding 33°C 

for the late twenty-first century (2071–2100) under RCP4.5 and RCP8.5 scenarios. This 

analysis further supports the conclusion already drawn from Figs. 13 and 14: stronger 

emission forcing results in more extended duration and stronger intensity of heat waves. The 

pattern detected from the RCP4.5 projection is sufficiently strong to overwhelm the 

corresponding pattern from the reference simulation (not shown). The fact that the regions 

projected to undergo a greater increase of heat stress indices will also experience stronger and 

more extended heat waves will impose much more significant risk and negative impact under 

global warming in South Korea  

As an illustrative figure to emphasize the remarkable increase of heat stress under 

global warming, we generate the table of Tsw that mimics the National Weather Service Heat 

Index table provided by National Oceanic and Atmospheric Administration 

(http://www.nws.noaa.gov/om/heat/heat_index.shtml). Figure 16 describes Tsw with respect 

to temperature and humidity. The areas of Tsw above 26, 28, and 32°C are shaded with 

yellow, orange, and red colors, respectively, to indicate the level of risk as done by Willett 

and Sherwood [2012]. We mark the maximum Tsw in the table after finding the corresponding 

temperature and humidity that are used to calculate the maximum Tsw. These are calculated 

by JJA averaged daily maximum for each year from the four individual RCMs (e.g., 

30*4=120 values are plotted for each of HIS, RCP4.5 and RCP8.5). Therefore, these values 
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represent the typical maximum condition, rather than very extreme cases that rarely happen. 

Tracking the movement of maximum Tsw corresponding to reference simulation and RCP4.5 

and RCP8.5 projections clearly shows that global warming pushes Tsw into an area of extreme 

danger. To summarize, uncommonly high Tsw in the present-day climate will become 

characterized as normal under future global warming. 

 

4. Summary and Discussion 

Given that climate models show a robust pattern of temperature increase and a corresponding 

overall moistening in response to enhanced GHG forcing [IPCC, 2013; Sherwood et al., 

2010], it is reasonable to expect that the future climate will increase the human thermal 

discomfort and heat-related mortality. However, in spite of a growing consensus on the future 

severity of extreme heat stress, the geographical patterns and magnitude of the projected 

changes remain poorly understood at the regional to local levels.  

In this study, twelve 30-year multi-RCM projections (WRF, HadGEM3-RA, 

RegCM4, and MM5) driven by HadGEM2-AO global projections under multi-scenarios of 

emissions (-Reference, RCP 4.5 and RCP 8.5) are used to project and understand the changes 

in extreme heat stress in response to different levels of anthropogenic warming. High-

resolution RCM results in terms of temporal (3-hour) and spatial (12.5km) scales make it 

possible to perform in-depth analysis such as diurnal variation and spatial details. The 

maximum and minimum Tas, Tsw and Tap, which are widely used as heat stress indices that 

include the effect of humidity, are comprehensively analyzed. For most of the analyses, both 

ENS and inter-model spread are presented, which is helpful in assessing the uncertainty 

introduced by different RCMs.  

Based on extensive validation of the reference simulation against 59 in-situ 

observational data, ENS is capable of capturing major characteristics in accordance with Tas, 
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Tsw, and Tap, in spite of some systematic cold bias. In particular, ENS shows an encouraging 

performance in simulating the extreme behavior of heat waves and heat stress indices in 

Daegu, a basin area that is one of the hottest cities in Korea. Moving to the future projection, 

significant increases of heat stress are projected in both RCP4.5 and RCP8.5 projections. The 

implied 2.4°C increase of mean Tas identified from the RCP4.5 projection is sufficiently 

strong to induce severe consequences in terms of human thermal comfort and heat-related 

mortality. This concern is supported by the notable increase of extreme heat stress indices, 

much stronger and more extended heat waves, and the emergence of a long period of 

consecutive tropical nights.  

The present study supports the value in the dynamically downscaled RCM 

projections. Since the vulnerability to heat stress is regionally and topographically specific, it 

is difficult for GCMs with relatively coarse resolution to account for the unique geographical 

properties that potentially modulate the regional variation and intensity of heat stress in South 

Korea. In this regard, the ENS projection based on high-resolution multi-RCM has important 

implications for understanding and projecting the details of extreme heat stress, which in turn 

provides significant input to develop an adaptation strategy for related public health issues, 

outdoor workforce and other infrastructure (e.g., electricity supply plans). As severe heat 

waves may become significant natural disasters with high mortality [Kysely and Kim, 2009], 

our study contributes to promoting further efforts and preparation for timely warning systems 

to cope with the region-specific impacts of global warming [Lu and Chen, 2016]. 

The four RCMs used in this study do not include the parameterization to represent the 

urban canopy process, suggesting that the projected increase of heat stress may be 

underestimated due to the urban heat island effect in big cities. Another possible caveat is that 

since Tsw, and Tap are empirical values based on different assumptions rather than 

fundamental thermodynamic metrics, they do not provide a universally applicable standard 
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[Zhao et al., 2015]. Therefore, the thresholds applied for this study (32°C for maximum Tsw 

and 40.6 °C for maximum Tap) are reference values for illustrative purposes. It is also 

difficult to use heat stress indices to ascertain the possible independent role of humidity and 

temperature [Davis et al., 2016]. Nevertheless, it is generally accepted that these 

biometeorological indices, which include the humidity effect, are better indicators than mere 

maximum and minimum temperatures of the potential health impact and mortality associated 

with global warming [Anderson et al., 2013; Davis et al., 2016]. 
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Table 1. List of the four Regional Climate Models (RCMs) used in this study and their 

configurations. 

 
WRF RegCM4 MM5 HadGEM3-RA 

Institute 

Pusan 

National 

University 

Kongju 

National 

University 

Ulsan National 

Institute of Science 

and Technology 

National Institute of 

Meteorological 

Sciences 

Dynamic 

framework 

Non-

hydrostatic 
Hydrostatic Non-hydrostatic Non-hydrostatic 

Vertical 

Coordinate/Levels 
Eta/28 Sigma/23 Sigma / 24 Hybrid/38 

Convection scheme 
Kain-Fritsch 

II 

MIT- 

Emanuel 
Kain -Fritsch II 

Revised mass flux 

scheme 

Land surface Noah CLM3.5 CLM3.0 MOSES-II 

LWR scheme CAM CCM3 CCM2 
Generalized 

2-stream 

SWR scheme CAM CCM3 CCM2 
Generalized 

2-stream 

Spectral nudging No Yes Yes No 

References 
Skamarock et 

al. (2008) 

Giorgi et al. 

(2012) 

Cha and Lee 

(2009) 
Davies et al. (2005) 

 

  

 

 



 

© 2017 American Geophysical Union. All rights reserved. 

Table 2. The statistics of daily maximum Tas (unit: ℃), Tsw (unit: ℃) and Tap (unit: ℃) 

averaged over 59 stations derived from observations (parentheses) and reference 

simulations (non-parentheses) in JJA season. 

 Mean Variance Skewness Kurtosis 

Tas 
26.0 

(27.2) 
8.4 

(8.6) 
-0.2 

(-0.2) 
-0.2 

(-0.1) 

Tsw 28.0 
(28.5) 

9.4 
(9.4) 

-0.2 
(-0.1) 

-0.7 
(-0.6) 

Tap 
35.0 

(36.0) 
18.7 

(19.0) 
-0.2 

(-0.1) 
-0.6 

(-0.5) 
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Figure 1. Topography (unit: m) used for HadGEM2-AO (1.875° x 1.25°) and RCM 

simulations over the RCM domain. The 59 weather stations (58 red closed circles and 1 blue 

open circle) are used to validate the reference simulations. Daegu station denoted by the blue 

open circle is specifically used to validate the extremes of heat waves and heat stress indices. 
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Figure 2. Spatial distribution of climatological mean temperature (a, b, c; unit: ℃) derived 

from APHRODITE observation, HadGEM2-AO, and ENS reference simulations, and their 

differences (d, e) in the summer season (JJA). 
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Figure 3. Spatial distribution of climatological daily mean temperature (a, b; unit: ℃), 

simplified wet bulb globe temperature (d, e, unit: ℃), and apparent temperature (g, h, unit: ℃

) derived from 59 observational stations and ENS reference simulations in the summer season 

(JJA). The model output are interpolated into 59 observational station sites and differences 

between ENS simulation and observation are then calculated (c, f, and i). 
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Figure 4. Comparison of JJA mean Tas (a, unit: ℃), Tsw (b, unit: ℃) and Tap (c, unit: ℃) 

between the four individual RCM simulations and their ENS mean and observations through 

Taylor diagram. The closed circle (asterisk) indicates the comparison between RCM 

simulations and 59 in-situ observational data (APHRODITE dataset). Radial axes show 

temporal standard deviation, normalized against that of the observations, and the arc denotes 

the spatial correlation coefficient. 
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Figure 5. Diurnal variations in summer mean Tas (a, unit: ℃), Tsw (b, unit: ℃) and Tap (c, 

unit: ℃) averaged over 59 stations derived from observations and ENS reference simulations. 

The blue line indicates ENS of the four RCMs, and the sky-blue shading shows the inter-

model spread between the maximum and minimum values among the four RCMs. 
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Figure 6. Probability density function of daily maximum Tas (a, unit: ℃), Tsw (b, unit: ℃) 

and Tap (c, unit: ℃) averaged over 59 stations derived from observations and reference 

simulations in the summer season. 
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Figure 7. Frequency distribution of consecutive hot days in Daegu station (blue open circle 

in Fig. 1) in the summer season as a function of duration. The lines indicate the daily 

maximum Tas (unit: ℃ ) averaged over the spells of each duration class derived from 

observations and ENS simulation. The four RCM spreads for frequency (bar) and intensity 

(line) are described by error bar and shading, respectively. 
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Figure 8. Total number of maximum Tsw (unit: ℃) exceeding the threshold of 32°C and 

maximum Tap (unit: ℃) exceeding the threshold of 40.6°C in the 30-year (1981-2010) 

summer season in Daegu station. The blue bar denotes the ENS and the vertical error bar in 

the middle of the blue box indicates the inter-model spread between the maximum and 

minimum values among the four RCMs. 
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Figure 9. Spatial distribution of future changes (2071–2100 relative to 1981–2010 under 

RCP4.5) in summer daily mean Tas (a, b: ℃), Tsw (c, d: ℃), Tap (e,f: ℃), and specific 

humidity (g, h: g/kg) derived from ENS (a, c, e, and g) and GCM (b, d, f, and h) projections. 

The superimposed dots denote the area where the changes are statistically significant at the 

95 % confidence level based on the Student’s t test. 
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Figure 10. As in Figure 9 but for RCP8.5 scenario. 
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Figure 11. Future changes (2071–2100 relative to 1981–2010) in diurnal cycle of JJA mean 

Tas (a), Tsw (b), Tap (c), and specific humidity (d) averaged over 59 stations in South Korea. 

The green and red lines (shading) indicate changes derived from RCP4.5 and RCP8.5 ENS 

projections (inter-model spread), respectively. 
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Figure 12. Frequency distribution of consecutive heat waves (a) and tropical nights (b) at 

various durations in Daegu station derived from reference simulation (1981-2010) and 

RCP4.5 and RCP8.5 projections (2071-2100). The colored lines indicate the daily maximum 

Tas (heat waves) and minimum Tas (tropical nights) averaged over each duration’s frequency 

corresponding to the same color bar graph. Reference simulation results from the analysis of 

heat waves are the same as those presented in Fig. 7. 
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Figure 13. Composite map of Tsw (unit: ℃) for tropical nights (a, b) and non-tropical nights 

(c, d) derived from RCP4.5 and RCP8.5 ENS projections. 



 

© 2017 American Geophysical Union. All rights reserved. 

 

Figure 14. As in Fig. 13 but for Tap (unit: ℃). 
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Figure 15. Spatial distribution of the mean duration (unit: days) of heat waves (a, b) and Tas 

(unit: ℃) averaged over heat waves (c, d) derived from RCP4.5 (a, c) and RCP8.5 (b, d) ENS 

projections. 
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Figure 16. Table of simplified wet bulb globe temperature (Tsw, unit: ℃) categorized by 

three risk levels. Summer mean daily maximum Tsw values in Daegu station (blue open circle 

in Fig. 1) are displayed. 

 


